LUNAR MISSION ONE

Cranfield University MSc Astronautics & Space Engineering 2015-2016 Group Design Project

NASA

Lunar Mission One

ESA/Foster + Partners

Lunar Mission One

The Objectives

- To land an autonomous spacecraft on the lunar South Pole before the end of 2024.
- To drill to a minimum depth between 20 and 100 metres.
- To perform in-situ science to provide a clearer understanding of the Moon's creation and to assess the suitability of a manned habitat.
- To examine the South Pole's potential for radio astronomy.
- To deposit a publicly acquired archive of human DNA and digital memories within the borehole.

The South Pole

- Previously unexplored
- Longer periods of illumination
- Large quantities of stable volatiles
- Communication blackouts

Shackleton Crater

- Shackleton crater ridge high elevation
- Slopes of 15 degrees
- Surface roughness of 3.5m
- 21 km diameter

Lunar Environment

- Dust
- Radiation
- Plasma
- Illumination

NASA

NASA

Derived Requirements

- Shall complete all mission objectives before nightfall
- Shall be able to land precisely in a 200 x 200m
- Shall be able to land on slopes of 15 degrees
- TRL of components must allow a 2024 launch readiness date
- Shall withstand the lunar and space environment for the minimum mission duration 177 days
- Must be able to autonomously perform during communication blackouts

Trade-Off

Yutu rover - Chang'e-3

Lunar Reconnaissance Orbiter - NASA Lander - Chang'e-3 -Shanghai Aerospace System Engineering Institute

Configuration Driver

Communication blackouts acceptable More resources can be dedicated to a single design Less ground testing Less implementation risks

D.U.M.B.O.

Drilling & Utility Moon Base Operations

- Dry Mass: 740kg
- Total Mass: 2016kg
- Height: 2.6m
- Width: 2.8m

Mission Timeline

Systems Architecture

Configuration

Front View

Cranfield

Opportunity - PanCam - JPL

Cranfield

Top View

Internal Configuration

Mass Budget

- Dry Mass: 740 kg
- Propellant Mass: 1276 kg
- Total Mass: 2016 kg
 Margins included

Cost

Ground Equipment

ullet

Cost Estimation: USD\$754M

- Uncertainty: \$ ± 188M ullet
- **Quoted Costs: FY\$10** ullet

Cranfield UNIVERSITY

Launch

- Falcon 9 Full Thrust
 - 3 Tonnes capability to TLI
- Launch site: Cape Canaveral, SLC-40
- Launch time/date: 12:47 GMT, 28-08-2024

Launch Configuration

Trajectory Phases

Phase 1 – Launch Phase 2 – Parking Orbit (Earth) Phase 3 – Cruise to Moon Phase 4 – Mapping Ellipse Phase 5 – Parking Orbit (Moon) Phase 6 – Landing Ellipse

Cranfield

Phase 1 – Launch (Green)

Phase 2 – Parking Orbit (Yellow)

Phase 3 – Cruise to Moon (Red)

Phase 3 – Cruise to Moon (Red)

Phase 4 – Mapping (Pink)

Phase 5 – Parking Orbit (Yellow)

Phase 6 – Landing Ellipse (Blue)

FOR UNFUNDED EDUCATIONAL USE ONLY

						Ma
ų.						TLI
Lu	un.		2	-		LO
	- Lu	un.				Cir
		un	un.			Lar
			·····	min		Tot

Manoeuvre	ΔV (km/s)	Propellant Mass (kg)
TLI	3.135	9841.0
LOI	0.903	478.0
Circularisation	0.019	8.7
Landing Ellipse Burn	0.019	8.5
Total	4.076	10336.0
Total for s/c	0.941	495.0

Earth Inertial Axes 28 Aug 2024 12:55:49.459

ece

Time Step: 792.9795 sec

Cranfield

AOCS

- AOCS provided by Falcon 9 up to TLI orbit
- Employed immediately
 - For detumbling, calibration and orbit determination

MONARC 5 Thruster - AMPAC-ISP

- 3-axis stabilisation provided by:
 - Eight 4.5N thrusters (plus eight for redundancy)
- Momentum storage provided by:
 - Three 4Nms reaction wheels (plus one for redundancy)

AOCS

- Orbit determination provided by:
 - Rigel-L star trackers position
 - LN-200S IMU's inbuilt accelerometers velocity
 - MOOG Bradford Coarse sun sensors sun tracking
 - Various DSA & DSN ground stations ranging
- Highest pointing accuracy 0.11 deg (from lunar mapping)

Rigel-L Star Tracker – SSTL

LN-200S IMU – Northrop Grumman

AOCS Thrusters

AOCS Sensors

Power

Thermal

- Modelled with two cases: hot & cold
- Passive thermal control

	Exterior	Interior	Antenna
Material	Teflon	Kapton	White paint
Emissivity	0.4	0.5	0.7
Absorptivity	0.12	0.31	0.1

Communications

Communications

Scientific Instruments

- Dust analyser ELDA
- Radiation monitor NGRM
- Turned on until end of mission

ELDA – University of Colorado (Xie et al. n.d.)

NGRM developed by RUAG.(RUAG n.d.)

Risks

Sequence

Braking Phase

Altitude: 15000m Range to landing site: 454730m Duration: 474s Driver: Minimum fuel Guidance: Optimal Control

Approach Phase

Altitude: 4000m Range to landing site: 2500m Duration: 71s Driver: Maximum accuracy Guidance: ZEM/ZEV

Cranfield

Vertical Phase

Touchdown

Altitude: 100m Range to landing site: 0m Duration: 19s Driver: Safe Touchdown

Key Hardware: Propulsion

- 890N nominal thrust
- 327s lsp
- Maximum Thrust of ~1300N

Aerojet R-42DM (C. Stechman 2010)

Propulsion Sub-system

Cranfield

Key Hardware: GNCS

Sensor	Amount	Name	Main Function
IMU	2	Miniature IMU	Inertial Navigation
IMU	1	LN-200S	Inertial Navigation
Optical Camera	1	N/A (Self designed)	Mapping
Flash Lidar	1	DragonEye	Navigation, HDA
Descent Camera	1	MARDI	Navigation, HDA
Lidar Velocimeter	1	N/A	Altimetry, Velocimetry

Descent and Landing

Altitude: 15000m Range to landing site: 454730m Duration: 474s Driver: Minimum fuel Guidance: Optimal Control

Braking Approach Descent

Altitude: 4000m Range to landing site: 2500m Duration: 71s Driver: Maximum accuracy Guidance: ZEM/ZEV

Braking Approach Descent

Altitude: 100m Range to landing site: 0m Duration: 19s Driver: Safe Touchdown

Braking Approach Descent

AOCS is used for translation along lateral axes

• Enable last minute course correction

• Increases Landing precision

OBDH

- Dual Leon 4 Processors
 - One analyses environment upon descent
 - One controls AOCS
 - If one fails the other can immediately take over operations
- Dual 250Gbit Mass Storage devices
- Architecture designed for redundancy

Braking Approach Touchdown

Landing Legs

Driving Requirements: -Wide footprint for stability -Absorb impact velocity (5m/s) -Avoid sinking into regolith

Cranfield UNIVERSIT

Apollo Lunar Descent Module

Main Challenges:Difficult to estimate in plane forcesCalculating compression distanceAccurate bearing strength of regolith

Chang'e 3

Landing Legs

- Crushable Cantilever
- Aluminium Lithium Alloy for struts
- Crushable Aluminium
 honeycomb inside main strut

Cranfield UNIVERSITY

Risks

Main issues to be mitigated:

- Instrumentation failure (Sun sensor, Lidar etc.)
- Asymetric thrust (Main engine or thrusters)
- Propellant Depletion

Post landing checks ensure spacecraft health before proceeding

NASA/GSFC/Arizona State University

29 Sep. 2024 START OF DRILLING PHASE

122 days

Schedule

- 100.8m in 122.34 days.
- 97 sequences/samples
- A sequence involves:
 - Drill descent + drill 1.05 m + retraction
 - Probe descent + analysis + Retraction time
- Sequence duration increases with wire retraction time.

The Drill

- Dimensions
 - Length: 1m
 - Diameter: 5cm
- Rotary percussive, hollow drill bit.
 - Pink: Drill bits
 - Dark green: Drill Mechanisms
 - Light green: Science probe
 - Black: The wireline
 - Length: 105m
 - Diameter: 2.5mm
 - Orange: Archives

Cranfield

Mechanisms

- Drill bit changing apparatus.
- Scientific instrument/drill bit mechanism interchangeability.

Credit: Honeybee robotics

- Wireline spool and motor.
- Archive deployment into the borehole.

Credit: Honeybee robotics

Science Drivers

Goal 1	Understand the geochemistry/mineralogy of the lunar crust
Goal 2	Characterise the impact history of the landing site and constrain the age of the south-pole Aitken basin
Goal 3	Understand the diversity and origin of the lunar south polar volatiles
Goal 4	Constrain models of the lunar interior
Goal 5	Characterise the lunar environment for the future scientific exploitation and human exploration
Goal 6	Identify resources for the future human space exploration
Goal 7	Assess the potential of the lunar surface as a platform for the astronomical observations
Goal 8	Science education

Scientific Instruments

Lunar Surface	Sample Analysis	Borehole Science
Gamma-ray Spectrometer	Isotope Mass Spectrometer	Borehole Permittivity Probe
Terrain Camera	Alpha Particle X-Ray Spectrometer	Highly Miniature Radiation Monitor
Dust Analyser	Raman-LIBS Spectrometer	Micro-Seismometer
Radio Astronomy Demo Package	Microscope	IR Imager
Radiation Monitor		Heat Flow Probe
Surface Permittivity Probes		
Surface Seismometer		

Primary Payloads

Permitivity Probe(s) Radio Astronomy Package(s) 0 Isotope Mass Spectrometer Drill Sub-system 0 Microscope Dust Analyzer Radiation Monitor Top View Scale: 1:10 X-ray spectrometer RAMAN Libs Sprectrometer

CASSE - Philae

Sample Handling: Instruments and Strategy

Instruments Configuration

Cranfield

Sample Handling: Design and Mechanisms

Mechanisms adapted from ExoMars Mission:

Assembly:

Core Sample Handling Mechanism ESA, 2013

Crushing station (left) and Dosing station (right)

Richter et al, 2013

First part of the SHS consists of the 3 mechanisms

ESA, 2013

ESA, 2013

Sample Handling: Design and Mechanisms

Whole assembly of the SHS:

Cranfield

Power: Solar Panels

UltraFlex Solar Array (Orbital ATK) is used – cells selected are XTJ Triple Junction (Spectrolab)

Orbital ATK, 2013

ESA, 2011

Cranfield

Power: Batteries and PCDU

Batteries:

Selected batteries are Li-Ion VES 180 from SAFT

- 2 batteries and 1 redundant
- Energy provided: 3500 Wh
- Night time withstood: 28 hours
- Minimal charging time: 36 hours

Terma Space, 2012

Architecture, Control and Regulation:

- 28V fully regulated bus
- MPPT Architecture (Max Peak Point Tracking)
- PCDU from Terma Aerospace is designed to control and distribute the power to all the loads

Terma Space, 2012

Thermal (Over Moon's surface)

- Two cases studied, hot case (T=250K) and cold case (T=223K)
- The same passive control design is able to stand both scenarios (over the moon's surface and parking orbits)

NASA/Jet Propulsion Laboratory

Communications & OBDH

- Phased Array Antenna
- Data Rate: 7.5Mbps

Total Data Collected Over The Drilling Phase

Instrument Groups	Data Rate (Mbits/s)	Drilling Phase (Mbits)
Surface Instruments	0.036	372
Science Probe Instruments	2.902	39
Sample Instruments	0.029	5
Total With 70% Code Inc (Mbits)	5.044	709

Risks

• Drill

• Wireline drill and spud tube reduces the probability of borehole collapse

- Qualification of components in direct contact with lunar dust or within borehole
- Before detachment, wireline cleaned with EMfield and bristles – unknown ferrous content of deep samples

Cranfield

Post-Drilling Phase - Timeline

29 Jan 2025 START OF EXTRA SCIENCE PHASE

Long Term Science Investigations

- 54 days of extra science
- 11 Instruments capable of extra science
- Notable Instruments
 - Micro-Seismometer
 - Surface Seismometer
 - Radio Astronomy Demonstration Package – OSS

Archives

- Storage of digital data and DNA given by the project backers
- 10 archive capsules
 - 5 into the borehole
 - 5 into the lander
- Volume = 200 cm^3
- Archive protected for millions of years
- Protection of the archive against radiation and shocks

Sample Return

- Objective: provide lunar sample for Earth scientists
- A nice-to-have for the project
 - Studied and designed
 - Cut due to risk and budget considerations

- Trajectory via Earth-Sun Lagrange Point
 - 100 days to come back
 - Low DeltaV

Sample Return

Cranfield

Sample Return

- Passive re-entry capsule
 - Interplanetary rated
 - 45-degree sphere cone
 - High velocity landing

- Integration into the lander
 - Launched like a missile from a submarine
 - Thermal protection of the lander by a Teflon layer

Cranfield

	2012 RAL LMO STUDY	CRANFIELD LMO STUDY
Mass	835.7 kg	740 kg
Delta-V (S/C Only)	3 km/s	2.88 km/s
Cost	USD \$751M	USD \$754M
Scientific Instruments	13	16
Initial Lunar Orbit	100x100 km	15x100 km
Configuration	 Single lander body mounted solar arrays 4 Main engines Side mounted drill 	 Single lander Sun tracking solar arrays 4 Main engines Centre placed drill
Drilling Time	6-9 months	4 months

